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    Abstract- The paper considers the problems and the methods of 

spectral analysis of elastic structural systems. The presented 

consideration focuses on the translation-invariant spectral 

formulations. Some periodic representations and the spectral 

decomposition are derived. In the context of general analysis of 

translation-invariant systems, the particular problems of 

structural vibration and stability are solved in analytical form.  

 
I.  INTRODUCTION 

 
   The behavior of mechanical structure that is loaded by 

external forces is completely characterized by its frequency 
spectrum and corresponding modes of free vibrations. As for 
structural stability, the spectrum of critical power parameters 
and buckling shapes determine instability phenomenon. In the 
class of general spectrum problems including the eigenvalue 
problems of the theories of vibrations and stability, the 
important place is assigned to the corresponding spectral 
boundary-value problems of translation-invariant structures. 

By definition, the translation-invariant systems are infinitely 
extensive and can be considered as asymptotic models of the 
real objects. Analysis and computation are appreciably 
simplified because of the absence of length parameter in these 
models. In addition, the qualitative and quantitative 
characteristics are presented and, in many cases, the 
corresponding problems solutions can be found in closed 
analytical form. 

The present paper focuses on the fundamental questions of 
spectrum analysis such as convenient representations and 
effective decomposition, definition of the special invariance of 
the problems operators, required boundary conditions for the 
obtained elementary cells. Special attention is devoted to the 
important examples of harmonic vibrations and stability of 
one-dimensional and two-dimensional translation-invariant 
mechanical structures. These examples are useful for clear 
explanation of the obtaining and formation of the eigenvalue 
spectrum of harmonic frequencies and critical buckling loads. 

We mention here the analytical approaches to translation-
invariant systems developed in the monographs [1 – 4] and in 
the papers [5 – 11]. 

Note that the problems of harmonic vibrations and elastic 
stability of unbounded structural elements (strings, beams, 
plates) lying on the rigid end elastic supports belong to the 

class of periodic spectral problems defined at the infinite 
domains and having the analogies in many divisions of 
physics. As an example, we shall indicate the problem of solid 
physics – the problem of determination of the electron 
energetic spectrum in the periodic potential field, considered 
for the first time in [12]. 

Note also that the discussions as for theoretical aspects of 
the solutions of periodic spectral problems as multiple 
applications are contained in monographs [1 – 4]. 
 

II. TRANSLATION-INVARIANT SYSTEMS 
 

To describe the translation-invariant system, we introduce 
Cartesian coordinates and orient the x -axis along the 
direction of translation symmetry. Consider the boundary-
value problem defining the eigenvalues and eigenfunctions 

     , , ,    ,Aw q x Bw q x x              (1) 

where the operators A  and B  are invariant with respect to 
the shift operation 

 x x ka                                    (2) 
and include some boundary conditions, i.e., A  and B  are 
not changed, when the argument x  is replaced: 
 x x ka . Here and in what follows, the real value a  

and integers k , n  are connected by the relations 

   k
2 2,  1 ,  1,a k a k n
n n

 
       .  (3) 

  Denote by   and  ,w q x , respectively, the eigenvalue 
and the corresponding eigenfunction of the boundary-value 
problem (1). The collection of some important parameters, 
different from x , are denoted by q . Consider at first the 

case, when   is a simple eigenvalue and  ,w q x  is unique 

to within arbitrary constant. Define the function  , w q x  

 , w q x a .  If we substitute  ,w q x  in (1) and fulfill 

the replacement   x a x  taking into account the 
translation-invariant property of the operators A  and B , 
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then we obtain that the function 
 ,w q x

 is also the  
eigenfunction of the boundary-value problem (1) belonging to 
the eigenvalue 


. Since 


 is simple, then  

   

   

, , ,

, ,

w q x Cw q x

w q x a Cw q x



 
                       (4) 

where C  is some arbitrary constant. The eigenfunction 
property (4) shows that to find the eigenfunctions 
corresponding to single eigenvalues, it is sufficient to consider 
the interval  0,x a . In accordance with (4), the values of 

functions in the interval  ,2a   are obtained as an 

extension of the function 
 ,w q x

 from the interval 

 0,a . In particular 

     

   

2, 2 , , ,

, , .k

w q x a Cw q x a C w q x

w q x ka C w q x

   

 
 

Since 2na   , then 

     , , ,nw q x a C w q x w q x   .        (5) 

Thus, the constant C  in (5) satisfies the following equation: 

1nC  .                                         (6)  
If we denote the roots of the equation (6) by 

 
2exp 1 ,   1,2,...,k

n i k k n
n

 
    

 
,     (7)  

then, the second relation in (4) can be represented as 

   , ,k

k n kw q x a w q x                     (8) 

where i  is an imaginary unit and 1,2,...,k n .  
Consider now the case of the multiple eigenvalue with 

multiplicity r  and corresponding system of linearly 

independent eigenfunctions  1 ,w q x ,…,  ,rw q x  of  
the boundary-value problem (1). Suppose that the system of 
these functions satisfies the normalization conditions 

    , , , ,   , 1,2,...,k l klw q x Bw q x k l r   .  (9) 

The functions    , ,j jw q x w q x a   

( 1,2,...,j r ) satisfy the boundary-value problem (1) and, 
as it follows from the translation-invariance property of 
operator B  with respect to shift x x a  , the 
orthonormalization condition (9) is also satisfied for the 
system of functions  ,jw q x . Using the system of 

eigenfunctions  ,jw q x , the functions  ,jw q x  can be 

represented in the form of expansions 

   
1

, ,
r

k kl l

l

w q x G w q x


                   (10) 

with coefficients klG . Substituting the expansions (10) into 
orthonormalization conditions (9) and taking into account the 
properties of the eigenfunctions  ,jw q x , we will have 

1

r

ks ls kl

s

G G



  .                          (11) 

The expansion coefficients lsG  constitute the unitary matrix, 

i.e., G G I  , where I  is an unit matrix. The matrix G  
can be reduced to diagonal form using the transformation 
matrix U  constituted from eigenfunctions  ,jw q x  and 

satisfying the orthonormalization conditions (9), i.e. 

,   jk j jkU GU       .                  (12) 

Thus, the eigenfunction corresponding the multiple eigenvalue 
of the invariant (with respect to shift x x a  ) 
boundary-value problem (1) can be taken in the form 
satisfying the relations (4), i.e. 

   , , ,   1,2,...,l l lw q x a C w q x l r   .    (13) 
By analogy with the case of simple eigenvalues, we can derive 
the general property of the eigenfunctions of the translation-
invariant boundary-value problem as 

     , exp ,w q x a i a w q x    .    (14) 
 

III. SOME REPRESENTATIONS AND DECOMPOSITION 
 

Consider the function  ,w q x  from (14) and introduce 

the function  0 ,w q x
 as 

   

   

0 , exp ,

exp 1 , .

ki x
w q x w q x

a

i k x w q x

 



 
   

 

    

    (15) 

 
Consider also the value of this function when x x a  . 
We will have 

 

   

 

0

0

,

exp exp ,

, .

k
k

w q x a

i x
i w q x a

a

w q x







 

 
      

 


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Thus, the function  0 ,w q x
 is periodic with period a . As 

a result of conducted analysis of translation-invariant system, 
we have 

   

   

   

   

0

0

0 0

, exp ,

exp 1 , ,

, , ,
1,2,..., ,    0 2 ,

2 .

ki x
w q x w q x

a

i k x w q x

w q x a w q x

k n a

a a

 



 

 
  

 

    

 

    

     

      (16) 

The solution of the boundary-value problem (1) defined at 

 ,x    is replaced by the solution depending on 

the parameter  0,2a    at the period  0,x a  
(method of decomposition for translation-invariant problems): 

   
         

, , ,    0 2 ,

, exp ,0 ,
0,1,2...  .

s s

Aw q x wB q x a

w q a i a w q

s

     

 



         (17) 

The maximal order of derivative is coordinated with the 
operators A  and B .   

It should be noted the variational formulation of the 
boundary-value problem (17) 

 

 

         

0

0

,
min ,   0 2 ,

,

, exp ,0 ,
0,1,2...  .

w

s s

w Aw
a

w Bw

w q a i a w q

s





  
      

  

 



         (18) 

It is important that the formulation of the spectral boundary-
value problem invariant with respect to finite shift at 
elementary cell 0   (0 x a  ) is correct as for scalar as 
vector state function. 

Using the relations (16), we emphasize that in the context of 
numerical realization of (17) or (18) it is enough to carry out 
all operations at  0,a   .  

Let  1 a  ,  2 a  ,… are eigenvalues of the 
problem (17) for fixed value of the parameter a . The 

values  i a   are the continuous functions in the case of 

continuous variation of the argument. Denote by  mini  

and  maxi  the minimum and maximum values of these 

functions. If    1max mini i    for all i , then we 

conclude that the spectrum of eigenvalues of the considered 
translation-invariant problems consists of nonoverlapping 
intervals with continuous spectrum. Note that the domains 
with continuous spectrum are transformed into “condensed 
zones” in the case of extensive (lengthy) systems.  
 

IV. APPLICATION OF SPECTRAL ANALYSIS TO 
MECHANICAL SYSTEMS 

 
    In what follows, we will present the application of the 
translation-invariant problems of structural vibration and 
stability. 
 
A. Harmonic Vibrations of Continuous String with Periodic 

Supports and Unbounded Length 

     Let the continuous string with tension T , density  , 

cross-section area S , and elastic supports at the points 

jx jl  ( 0, 1, 2,...j    ) is described by the spectral 

boundary-value problem for the amplitude transverse vibration 

function  w x  

 
 

     

2
2

2 0,    ,

0,

0, 1, 2...  ,

j j j

j

d w x
w x x

dx

dw dw
x x w x

dx dx

x

 

      

   
      

   

  

   (19) 

written in variables /x x l , 2 2 2 /S l T   , 

/l T   , where   is frequency and   is rigidity of 
elastic supports (in what follows the tilde is omitted). The 
boundary-value problem (19) is translation invariant with 
respect to shift ( j  is an arbitrary integer)  

x x jl   

and its analysis is reduced to the elementary interval  0,1  
as 

 
 

   

     

2
2

2 0,    0 1,

0 2 ,
1 0 ,

0 1 0 0.

i

i

d w x
w x x

dx

w e w

dw dw
e w

dx dx



 

 

    

   



   
      

   

 (20) 

 General solution and boundary conditions of (20) lead to the 
relation 
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 cos cos sin
2

f


    


 .         (21) 

Taking into account that cos 1   and consequently 

  1f   , we obtain that the free string vibrations are 

realized with the frequencies filling the intervals with the 

boundaries (   1f    ): 

 

 

1:      sin 0,   tan ,
2 2 2

1:   cos 0,   cot .
2 2 2

f

f

  
    

  
     

   (22) 

The frequencies satisfying conditions  sin / 2 0  , 

 cos / 2 0   determine the lower bounds of the bands 
with continuous spectrum and correspond to the harmonic 
vibrations of the string with free ends. The conditions 

 tan / 2 / 2   ,  cot / 2 / 2    
determine the upper bounds of the frequency bands 
corresponding the string harmonic vibrations with elastic 
clamping (of rigidity  ) at the ends. Thus, the frequency 
spectrum of unbounded string with periodic elastic supports 
consists of the bands with continuous spectrum, which 
boundaries are determined by the conditions (22). 
 
B. Free Transverse Vibrations of Unbounded Continuous-

Solid Beam Lying on Supports with Equal Spans 

     Periodic translation-invariant boundary-value problem of 
transverse vibrations of the beam (Fig. 1) with bending 
rigidity D , cross-section area S , density   is lying on the 

supports at the points jx jl  ( 0, 1, 2,...j    ) and 

admit the shift: x x jl  . Using the notation 

/x x l , 2 4 2/S l D    (the tilde is omitted), the 
considered spectral problem can be formulated on elementary 
cell as  

 

 
 

   

   

   

4
2

04

2 2

2 2

0,    : 0 1,

0 0,   1 0,

1 0 ,

1 0 .

i

i

d w x
w x x

dx

w w

dw dw
e

dx dx

d w d w
e

dx dx





    

 





   (23) 

  
Using the general solution of the differential equation in (23) 

     

   

1 2

3 4

cosh cos

sinh sin

w x c x c x

c x c x

    

   
 

and the corresponding boundary conditions used for 
determination of the arbitrary constants 1c , 2c , 3c , 4c , we 
can derive the frequency equation 

 

cos

sinh cos cosh sin
sinh sin

.f

 

    
 

  

 

    (24) 

Since cos 1  , then   1f   . If 1 , then the 

asymptotic behavior of the function  f   from (24) is 

  cos sinf      . 

  The lower and the upper frequency bounds denoted by min  

and max  are determined with the help of the equation 

  1f   . We will have 

 

 

1:

cos 0,   tan tanh ,
2 2 2

1:  

sin 0,   tan tanh .
2 2 2

f

f

  

  
 

 

  
  

     (25) 

Analysis of the solution (25) shows that the lower boundaries 
of bands with continuous frequency spectrum correspond to 

vibration of simply supported beam (  cos / 2 0  , 
Fig. 1 Beam with equal spans. 
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 sin / 2 0  ). The upper band boundaries correspond 

to the rigidly clamped beam at both ends 

(    tan / 2 tanh / 2    ). Note that for 

bounded continuous beam with length L  lying on the 
periodic supports with equal spans l , the continuous spectrum 
is transformed into “condensed spectrum” when / 1L l . 
 
C. Stability of Unbounded Continuous Beam under 

Compression 

     Consider the unbounded beam (Fig. 2) lying on the system 
of supports at the points  

jx jl  ( 0, 1, 2,...j    ) 

with equal spans of length l . The beam having the bending 
rigidity D  is under compression by longitudinal force P  
and admit the shift x x jl  . The described translation-

invariant system can be formulated at the elementary cell 0  
as   

   4 2

4 2

0

0,

: 0 1,   0 2

d w x d w x

dx dx

x

  

      

                  (26) 

with boundary conditions from (23), which can be used for 
determination of the integration constants jd  

( 1,2,3,4j  ) in the general solution 

     1 2 3 4cos sin .w x d x d x d x d     

Using the notations /x x l , 2 /Pl D   (the tilde is 
omitted) and standard operation, we derive the following 
equation: 

 
cos sincos

sin
f

   
   

  
.    (27) 

 

 
 

 
 
 

Taking into account the inequality cos 1   and 

consequently   1f   , we conclude that the spectrum of 

critical buckling forces consists of the bands with continuous 
spectrum. As it follows from (27), the bands boundaries are 

determined with the help of the equation   1f     and 
have the form 

   1:   1 cos 2sinf         ,  (28) 

     1:   cos 1 0f       .           (29) 

Represented equality (28) is satisfied by the roots of equations 

   cos / 2 0,   tan / 2 / 2     . 

The equation (29) has solution 2k k   , 0k  . The 

solution 0   is excluded from the considerations. In 

addition, the function  f   achieves the maximum value 

  1f    for 2k k   . The roots of the equation 

 cos / 2 0   are given by the formula 

 2 1k k     and the roots of the equation 

 tan / 2 / 2    are represented as 

 2 1 2k kk       ( 1,2,...k  ), where 

 2/ 2 1k k     when 1k . Note that the 

asymptotic value of k  is 1 0.219  . 
     Thus, the spectrum of critical buckling forces of 
unbounded continuous beam with equal spans consists of the 
bands with continuous spectrum and with lower boundaries 

described by the expression  2 1k k    , 

1,2,...k  . The upper boundaries are determined by the 

roots of equation  tan / 2 / 2   , having 

asymptotic representation  2 1 2k kk       

( 1,2,...k  ). Note that the distance between the boundaries 

of the neighboring bands  2 4/ 2 1k k k       

tends to zero when k  is increased. 
 
D. Free Vibrations of Elastic Band Lying on Periodically 

Distributed Rigid Supports 

     Let us analyze the formation of frequency spectrum of the 
free transverse vibrations of the elastic band (Fig. 3) simply 
supported along unbounded edges ( x  , 

Fig. 2 Beam under compression. 
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0,y b ) and lying on the system of rigid supports 

( 0 y b  ,
jx ja , 0, 1, 2,...j    ). The band is 

characterized by the density  , thickness h , width b , 

bending rigidity D  while the transport system is distributed 
with the spans a . The transverse vibrations are described by 

displacement function  ,w x y  that is periodic along the 

edges and admit the shift x x ja   . The considered 
spectral boundary-value problem is translation-invariant and, 
in correspondence with the general representation, the 
unknown function is found out in the form 

   , , ,   0 2i aw x a y e w x y a     . 
Boundary-value problem is formulated at the elementary cell 

0 :0 ,   0x a y b      as 

 

   

   

   

   

   

4 4 4
2

4 2 2 4

0

2 2

2 2

2 2

2 2

2 ,

, ;

,0 , 0,

,0 , 0,

0 ;
0, , 0,

, 0, ,

, 0, ,

0 .

i a

i a

w w w
D h w

x x y y

x y

w x w x b

w w
x x b

y y

x a

w y w a y

w w
a y e y

x x

w w
a y e y

x x

y b





   
     

    



 

 
 

 

 

 

 


 

 


 

 

   (30) 

 
 

 
 

We will find out the solution of the boundary-value problem 
(30) in the form satisfying the simply supported boundary 
conditions along the band edges  

     
1

, sinm

m

m
w x y W x y

b





 
  

 
 .           (31) 

Substitution of the representation (31) into the relations (30) 
leads to the following boundary-value problems for the 

functions  mW x :  

   

   

   

   

   

4 2
2

4 2

4 2

2 2

2 2

2 2

2

0,

0 0,   1,2,...  ,

0 ,

0 ,

/ ,   / .

m m

m

m m

m m

i am m

i am m

m

d W x d W x

dx dx

W x

W W a m

dW dW
a e

dx dx

d W d W
a e

dx dx

m b h D





  

   

  





      

   (32) 

Then, the general solution of the ordinary differential equation 
(32) with unknown coefficients kc  ( 1,...,4k  ) 

     

   

1 1 2 1

3 2 4 2

2 2
1 2

cosh sinh

cos sin ,

,   0

m

m m

W x c x c x

c x c x

    

   

      

. 

is subjected to the boundary conditions in (32). As a result of 
elementary operations, we derive the equation for 
0 2a     

     

   

   

1

2

1 2 1 2

1 1 2

2 2 1 1 2

cos ,

sinh cos

cosh sin ,

sinh sin .

R
a f

R

R a a

a a

R a a

  

    

  

     

           (33) 

 Since cos 1a   then the free vibrations are realized 

with the frequencies, for which   1mf   . In particular, 

for asymptotic frequency values 
2

1 2,   2 ,   0m m      , 
we will have 

Fig. 3. Band on rigid supports. 
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1

2

1

2

1,

sinh 2

2 cosh 2 ,

sinh 2 2 .

P
f

P

m
P a

b

m m
a a

b b

m m
P a a

b b

 

 
  

 

  
  

 

  
  

 

 

Thus, the free band vibrations with frequencies 2
m m   

are admissible. 
     The boundaries of bands with continuous frequency 
spectrum are determined with the help of conditions 

  1mf   . We will have 

  2

2 2 1

1

1:   cos 0,   
2

tan tanh ;
2 2

m

a
f

a a

 
    

 

     
   
   

       (34) 

  

  2

2 1 1

2

1:   sin 0,   
2

tan tanh .
2 2

m

a
f

a a

 
   

 

     
    

   

           (35) 

The total spectrum of free vibrations is the union of the 
separate spectrums, which consist of the bands with 
continuous frequency distributions (see the relations (33) – 
(35) with 1,2,3,...m  ). Note here that the spectrum of 
free transverse vibrations of the band with simple supports 
along the edges ( ,  0,x y b   ) and without 

intermediate supports at ,  0, 1, 2,...x ka k     is 

continuous with the lower boundary 2 2
1 /h b D   . 

 
V. CONCLUSION 

 
    Analytical studies of the periodic translation-invariant 
mechanical systems are very important from both theoretical 
and practical points of view and have attracted the attention of 
many researchers working in the domain of theoretical and 
applied mechanics. Of particular interest has been the 
problems of elastic stability and harmonic vibration of 
unbounded systems. 
     In the paper, we considered the fundamental questions of 
spectral analysis of translation-invariant systems and 

developed the convenient representations, effective spectrum 
decomposition and definition of the special invariance of the 
problem operators. Special attention was devoted to the 
important examples of harmonic vibrations and stability of 
unbounded translation-invariant mechanical systems. Clear 
explanation of spectrum formation was presented.    

 
APPENDIX 

 
Note 1 

Suppose that the considered boundary-value problem 

   , ,Aw q x Bw q x   is defined on the finite interval 

0 x L   and, at the ends of interval, function  ,w q x  
satisfies the periodicity conditions, i.e. 

   , ,w q x w q L x  . Assume that / 1L a  and 

/ 1n L a . Consequently, 

 1
2 2 21 1.k k

a
k k

n n L


  
       

Thus, the values k  are quasi-continuously varied and, in the 
limit, these values fill the continuous interval. In the 
asymptotical case, when /L a , we arrive the 
representation 

   

   

0

0 0

, , ,

, , .

i xw q x e w q x

w q x a w q x



 

 



 
 

Here we use the notation /k a   ( 0 2a   ). 
This representation of eigenfunctions of translation-invariant 
systems is correct also for cyclic problems. It can be shown, 
that in the case satisfying the condition / 1L a , the 
interval with continuous spectrum are transformed into the 
“condensed zones” of eigenvalues.    

Appendixes, if needed, appear before the acknowledgment. 
 

Note 2 

As it was mentioned before, the obtained general relations 
of translation-invariant system are correct also for cyclic 
systems. The corresponding relations of cyclic systems are 
derived from early obtained relations of translation-invariant 
systems with the help of replacements the coordinate x  by 
the angle   and the shift parameter a  by the period of 
rotation.  
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